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D E T E R M I N A T I O N  OF T H E  S T R E N G T H  C H A R A C T E R I S T I C S  O F A P H Y S I C A L L Y  

N O N L I N E A R  I N C L U S I O N  IN  A L I N E A R L Y  E L A S T I C  M E D I U M  

I. Yu. T s v e l o d u b  UDC 539.37 

An isotropic elastic plane with a physically nonlinear inclusion with unknown properties is 

considered. The general relations between the stress-strain state of the inclusion and the loads 

applied at infinity are obtained. These relations are used to develop a method of determining the 

viscoelastoplastic properties of an inclusion that is based on measurement of the displaceme'nt 
vectors of two points that lie on the boundary of the inclusion and are nonsymmetrical with 

respect to its center. This makes it possible to find numerical values of  the constants that enter 
the constitutive equations of an inclusion. 

Eshelby [1] showed that tim uniformly distributed stresses applied at  infinity cause a uniform stress- 
strain s tate  in a homogeneous elastic inclusion of given shal)e. Vakulenko and Sevost 'yanov [2] revealed 
that the stress-strain state of an ellipsoidal inclusion with nonlinear propert ies  which is embedded into an 
elastic medium is also uniform. This is also true for tile two-dimensional case considered in this paper. We 
propose a nmthod of deternlining the viscoelastoplastic properties of an elliptic, ptwsically nonlinear inclusion 
(EPNI) by me~suring tile disl)lacement vector of two l)oints that lie Oil the 1)oundary of the inclusion and are 
nonsynmmtrical with resl)eet to its center. The state of the art of engineering techniques makes it possible 

to i)erfonn high-accuracy me~surements [3]. 
1. S t r e s s - S t r a i n  S t a t e  o f  a n  E las t i c  P l a n e  w i t h  E P N I .  We consider the plane stresses or 

generalized plane strains of an EPNI-containing isotropic eh~stic plane under  uniformly distr ibuted stresses 
at infinity (which, generally, depend on the time or loading parameter).  \Ve denote  the principal values of 
these stresses by Nl and N2, respectively, and the angle made by the first principal axis with the Ox axis by 
o,. The coordinate system O:ry is chosen so that the equation of the boundary  L between the elastic medium 
S an(t the inclusion S* h~s the form x2a -2 + g2b-2 =- 1, where a ) b. Before the stresses are applied at 

infinity, the regions S and S* are in tim initial undeformed state. 

We write Hooke's law for the region S: 

81Lekl = (~e -- i)a,,nSkl + 4a0l (k. l = 1, 2), a~ = akt - a,,,Sl,,J2. (1.1) 

Here a~ and 5kl are the stress-deviator and unit-tensor components, respectively, p is the shear modulus, 
ze = 3 - 4u refers to plane strain and w = (3 - u)/(1 + u) refers to the general l)lane stress, u is the Poisson 

ratio [4]: sunmmtion is performed over repeated indices from 1 to 2. 
The strains e~,l are assumed to be small and are expressed in terms of the disl)lacements ak (k, l = 1, 2) 

t)y the Cauch.v relations. The load and disl)laccmcnt fiehls are continuous on the boundary L. 
As ha,s already 1)een noted, under the at)ovc-indicated conditions, the uniform stress-strain s ta te  occurs 

in the EPNI  with nonlinear properties [2]; however, tim relations between the stresses and strains in S* and 
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those at infinity are lacking [2]. We assume that  the total strains of the EPNI are composed of the elastic c~.~ 
and inelastic _N, strains: ~kl 

at:z = ~kt + eN* (k, l = 1, 2). (1.2) 

To const ruct  the desired relations, we map the elastic region S onto the exterior of tile unit circle 7 ill 

tile complex plane ( [4]: 

z = ~(~)  = R(~  + 'mC~) ,  = pexp(iO), 

( R > 0 ,  0 ~ < m < l ) .  

(1.3) 

# ( 0  + roD) = - ( A  + roB) + (ae+ 1)F. 

(1.10) 

735 

R I r ' ( / +  [(m2 + 1 ) (A-  2 r ) +  ,n(B + B -  r ')](" + B -  m 2 B -  r ' l , j  
i ( (  2 - m) 

Using the relations 20w*/02  = c H - -~ + 2is~2 and Ow*/Oz + O,F*/05 = ~* ~* * ~ U +-22, where w* = -u~ + .iu,~ 
[5] (e~ t do not  depend on z and ~.) and assuming that the point (0,0) E S* is fixed, i.e., w*(0.0) = 0, we 

express the  complex displacement in S* in the form 

* = * ~* "~* * _ * ,'o* ( 1 . 8 )  2w C z W D S ,  C = s -}- ~22 -}- 2"t~ , D - ~ a l l  g22 + 2 t~  12, 

where a* is an arbitrary constant  equal to the rotat ion value. 
Since tile disI)lacements at  tile interface between the regions S and S* are continuous, i.e., w = w* on 

L, the f lmctions 9z(() and '&(~) in (1.7) must satisfy tile known boundary condition for dist)lacements; the 
latter can be combined with a sinfilar con(lition for the stress l)roblem [4, 5] and relations (1.8) to give 

( ~  + 1)~(cr) = (A + itC)~.'(cr) + (B + ItD)w(a), (1.9) 

where c~ = exp (iO) is an arb i t rary  point on 7. 
Subst i tu t ing  (1.3) and (1.7) into (1.9) and equating the coefficients of c~ and a - t ,  we obtain 

~,(,,,s + z3) = ~(,,~A + B) - (,~ + 1)(,,~r + r ' ) ,  

(1.7) 

Ki > 1. 

2R = a + b, m = ( a -  b)/(a +b) 

Assuming that the ro ta t ion  at infinity does not occur and bearing in mind that  the principal vector 
of the forces applied to the boundary  L from the side of S* vanishes (since the stresses a~. t at all the points 
of S* are equal),  we obtain the following expressions for the functions p ( ( )  and ~b(() that deternfine the 

s t ress-s t ra in  s ta te  in S [4]: 

~ ( ~ ) = F R ~ + ~ 0 ( ( ) ,  'q)(~)=F'R~+~b0(r 4F=NI+N,_ , .  2 F ' = ( N 2 - N t ) e x p ( - 2 i c  O. (1.4) 

Here ~0(( )  and '~)0(~) are determined fronl tile boundary values of the function f = 20U/02 [U = U(z, 5) is 
a stress function] [4, 5]. The  continuity condition in tile normal direction to the boundary L implies that  the 
equality OU/02  = OU*/05 must hold on this boundary, i.e., 

OU* 
f = 2 - b - g -  on L. (1.5) 

Here U* = U*(z, 5) is a stress hmct ion for tim EPNI. 
Since ~7~. t do not depend on x and y (and, hence, on z and 5), with allowance for the relations a~l + ~ 2  = 

40"U*/(Oz05)  and c,.~., - a ~ 1  + 2ia~2 = 40"U*/Oz '2 [5], after discarding the z and 5 linear terms which have 

no effect on the stress-strain state,  for U* we obtain 

2U* = Az2 + Bz'Z/2 +/~22/2, 2A = a;l + cry2, 2B = a~2 - a* u + 2in;,,. (1.6) 

From (1.4)--(1.6) and formula-s for ~0 and '~/'0 [4], we find 

~z(r = R{F(  + [/~ + m (A  - r) - ~ t ] r  



Using the  expressions for A, B,  C, and D in (1.6) and (1.S) and the equalities 0.~ 4- 0.~ = 4F arid a@ - 
a ~ + 2 i 0 " ~  = 2F'  [4] and performing simple manipulations, we obtain from (1.10) the desired relations between 
the stresses and strains in S* and those at infinity: 

Fi = ~ q y j  + L~qxi (i = t. 2. 3). 

* F, ,  = * F 3  = ~* * * E l  511 . . . .  = ~22"  2r ./Jl = 0.11, !]'~ = -  * 0"22, Y3 = (712, 

oo (~4-  1)(1 -- m) 
xi : 0.~1, x2 ---- 0.~2, x3 = o'12, ~11 = 4Lt(1 4- 'r/~) ' 

- -  1 ( z e +  1 ) ( 1  + m )  ~ e +  m 2 
O q 2  ---- O~21 ~-- - - ~  O~22 ---- - -  O~33 - -  a~ 4 ~ ( i  - ,~) ~(1 - ,~2)- 

(1.11) 

2r = ( e e + l ) ( 3 - m ) ,  / 3 1 2 = / 3 2 i -  ~+____~1, :3,,=__ ( z e + l ) ( 3 + m )  
8#(1 + 'rn) 8# 8p(1 - m) 

~ e + l  
~33 - # ( 1  - m 2) (0 ~< ,,~ < 1),  

where the o ther  coefficients c~ij and /3ij are equal to zero: summation in (1.11) is performed over j from 1 
to 3. 

The  const i tut ive equations for S* of the form (1.2) and (1.11) form a closed systein that  allows us 
to determine tile loading history 0.~.t = a~*t(t) (k, I = 1, 2) in the EPNI from the known loading history 
a ~  = a ~ ( f )  at  infinity, where f is the tinie or loading I)arameter. 

One can show that  the system is uniquely solwd)le for a~. I = a~l(t) under the usual assumptions of 
stable inelastic deformation [6]. Thus,  :~ ~N. cN*/,,* n .  kl = ~ kl ~'~,,~- J are differentiable functions (which is, for example, 
the case where the behavior of the inclusion material is described by the deformatioii theory of t)lasti('ity), 
the stabil i ty condit ion has the fi)rm ~ N * A  * r ~ k !  akl /> 0. If ~ . are the irreversible strains (plastic. viscous, and 

l 

a - N * A  * creep strains) satisfying relations of the flow theory, a similar inequality has the form ae~,t aa~,l dt ) 0 at 

0 
any moment  t > 0 for the corresponding initial conditions at t = 0 [6]. 

One can show that  the above solution for an EPNI-containing plane is unique, i.e., for given 0.~ and the 
above-indicated restrictions imposed on the relation between s~* and a~.z, the stress-strain state occurring 

in S* is uniform. 
If the uniform strains e~* are specified in S* (whose nature is of no significance) and a ~  = 0. the 

stresses a~.t are determined from relations (1.2) and (1.11) uniquely. This c~se was studied by Eshelby [1]. 
2. D e t e r m i n a t i o n  o f  t h e  E l a s t o v i s c o p l a s t i c  C h a r a c t e r i s t i c s  o f  a n  In c lu s io n .  We assunle that 

the elastic constants  It and ~e of the medium S and tim geometrical parameters R and m of the inclusion S* 
are known. It  is required to determine the inechanical characteristics of the inclusion. With the use of (1.11), 
one can solve this problem or, to be more specific, the problem of determining the numerical vahms of the 
constants in Eqs. (1.2), in which the relations for ~k~':* and c~i* are to be detailed. We assuine that the elastic 

strains obey Hooke's  law, i.e., :r * �9 kt are expressed in terms of ak/ by linear relations which involve six unknown 

constants in the  two-dimensional case. The inelastic strains ~ *  are coml)osed of the plastic strains ~v*~./an(t 
the time-del)en(tent viscous strains ~kl'~'c*" ~.~.~* ._~ ~kl~V* + ~kl"C* (k. 1 = 1. 2). With allowance for this relation, we 

write (1.2) in the form 

Fi = e~j!/j 4- f~  4- J[~ (i : 1 .2 .3 ) .  (2.1) 

f~ v. p. p p* .~, ~c. 2~(,, -'~ ~ 1 1 '  f ' ;  -~- ~22"  f '~ ---" 2 ~ i 2 '  ] l  : ~ l l '  f ,~ ---- ~r 9f~ "--- ~ 1 2 '  

where [[c~jll (i, j = 1, 2, 3) is the symmetrical matr ix composed of the elastic-compliance components of the 

inclusion, i.e., the  elastic strains of the inclusion f~ are given by 
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10s 2 2 e, 
f e _  2 0 y i '  8e -~ oqjYiYj. (2.2) 

To determine the elastol)lastic properties, we assume that the external  loads, i.e., the stresses xi, vary 
in direct proport ion with one parameter.  This allows us to use (at least, in the first approximation) the 
relations of the deformation theory of plasticity: 

O, Sp ~ O'y, 

f~  ---- OSp (2.3) 
A ~ Y i '  Sp ~ O'y. 

Here sp = sp(yi) is a first-power homogeneous function, ay is the yield point  upon uniaxial extension along 
the O x  axis, A > 0 is the undeternfined multiplier for an ideal plastic material [in this case, the second 
inequality in (2.3) is replaced by the equality sp = ay], and A = A(sp) is a monotonically increasing function 
for a hardening material, which is assumed to be a power function: 

= B0s . (2.4) 

We write sp by analog)" with relation (2.2) for Se: 

2 P P P 8p --~ O:ijYiYj, Ozij = Ozji, GPl = 1. (2.5) 

It is noteworthy that  the function Sp in (2.5) is a generalization of the relations sp = sp(Yi) for an 

isotropic nmdium for a p, = a~, = 1, a~2 = 1 - / ] / 2 ,  and a~3 = ,3, and the other aiPj are zero (the Mises 
criterion for/3 = 3 and the Tresca criterion for/3 = 4.) 

Finally, in determining tile viscous strains fc ,  we assume that the aftereffects do not occur in the EPNI 
(which can be verified experimentally) and use the common relations of the steady-creep theory [6] 

][r ,~n ()'~c .2 O:~j,,I]i]]j, c~Cj t~ i .  (2.6) " c Oyi '  8c ----- ----" 

Instead of the l)ower function in (2.6), one can use other functions, for example, exponential, hyperbolic 
sine, fraction-linSar, etc. [6]. 

We assume that  when the external stresses xi  are applied, the displacements 'u k* (k = 1, 2) of two 
points L located on the bomldary nonsynunetrically relative to tlm E P N I  center [which is assumed to be 
fixed: w*(0,0) = 0] can be measured. As follows from (1.8) and (1.3), the strains Fi and the rotation of 
~* are determined uniquely in the inclusion. Indeed,  substituting the values of zk - R(o'k + mo'~ l) and 
5~. = R(o '[  l + toga) (k = 1, 2) into (1.8), we obta in  a system of two linear equations for C and D whose 
determinant R2(1 -'lo,2)(0"10"2 l -O"20"11) does not vanish for zi # z2 and zt ~ -z2.  

Given the strains in the inclusion Fi and the  external stresses xi ,  tim stresses in the inclusion gi 
(i = 1, 2, 3) are determined uniquely, since, according to (1.11), tlm m a t r i x  ][(~ij[[ is negative definite and 

det Ha/j[[ < 0. 
Bearing the foregoing in mind, we propose the  following algori thm of calculating the constants in the 

constitutive equations. 
D e t c ~ , i n a t i o n  of the Elastic Constants  ai~.. It  is necessary to measure the displacements of tile al)ove- 

indicated points, from which the strains Fi are de termined  for combinations of the external loads xl k} such 

that tile correst)onding stresses yl h') in (1.11) are l inearly independent, i.e., A -- det []ylk)[[ r 0, and do not 

cause the plastic strains f[~(A') (i, h" = 1, 2, 3) in the inclusion. The la t ter  can be verified by unloading, i.e., 

removing the loads :rl ~) and measuring the residual displacements ~,*(h') of tile above-indicated points of the 

contour L (if f~,(k) = O. the condition &.(k) = 0 must  hold and vice versa). It is a.~sumed that the loads are 

applied at infinity instantaneously (the viscous strains fc(k) do not occur  in the inclusion). 
With allowance for these remarks, it follows from (2.1) that 

aiiYJ~ (k) = F(k) (i, k = 1, 2, 3). (2.7) 
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Relations (2.7) constitute a systenl of nine linear equations for six desired cU. ~. If we confine our 
analysis to two experiments (k -- 1, 2). tile matr ix  of tile system is degenerate  despite the fact that 

tile number of unknowns coincides with rile nunlber of  equations in (2.7). Indeed, for the desired vector 
.': C ~ C C C . . .  , {aLl" ~h2, cq3, ~22, (L'3, a3:~}, tile structure of the m a t r L x  H a i j  H ( i ,  j = 1, 2, 6) is as follows: al l  = a 3 2  i'> !,> 

O53 = .tl a l 2  = a 3 L  ---= a 5 5  = y , a 1 3  = a 3 5  ---- ( t56  ---- 2.1., , a 2 1  ---- a 4 2  = a 6 3  = , a 2 2  ---- a , l l  ---- a 6 5  = y .  , 

and a23 -- a45 = a66 = yl~ 2). witil other aij being equal to zero. Direct calculations show that  det I[aijl[ = O. 
Therefore, setting i = 1, we find a~j from ttlree equations corresponding to k = 1, 2. and 3. Similarly, setting 
i = '2 and then i = 3, we obtain systems for (~i and c~.~j ( j  --- 1, 2. 3) for k = 1, 2, and 3 wilose deternlinants 
do not vanish for the three cases (i = 1, 2, 3). Consequently, all the constants cti~ are determined uniquely. 

It  should be noted that tile coefficients c~ ~) and a~i (i # j )  are de termined by the above method as 
independent coefficients. Since ai~ = a~i, a comparison between these quanti t ies  can serve as a criterion to 
check the Ineasurement accuracy and the validity of the adopted twpotheses, in particular, tile hypothesis 
that the stresses and elastic strains ill the inclusion are related linearly. 

Vqe consider the case of an isotropic inclusion. Let  the equality 2y3/ (y l  - g2) = F'3/(FL - F),) be 
sufficiently accurate for the data obtained in tile above-descril)ed experiments,  which shows indirectly tilat 
the stress and strain tensors are co~.xial in the two-dimensional case: if this equali ty holds for mW combinations 
of Yi (i -- 1, 2, 3), tile elastic constants are related, by vir tue of (2.1) (for f~  ---- f~ = 0), by the fornnllas 
a~l = ()'~'2, a~3 = 2(c~L -- e*~2)" and o~3 = o~3 = 0, wtlich corresponds to Hooke's law for an isotropic nledium 
of tile form (1.1) that  contains only. two constants #* = (1/2)(a~l  - (~2 )  -1 and ze* = (3c~l +a~2)(c~t _ai2)~ -1. 
Therefore, in the first approxinlation, for elastic strains, the  inclusion can be assumed to be isotropic, and (*~l 
and (tci.2 can be determined fronl the data  obtained in one of. the above-mentioned experinlents, for exanlple, 

from tile relations ct~lyt + a~2g 2 = FL and (~2gt + aeiLY2 = _bE,_) provided ]Yl[ # [Y2[- 
Dctcrrnination of  Plastic Charactcz'istics. Assuming that the quanti t ies  oi  e) are known, for eb~stic 

defornlation of tile EPNI,  we obtain tile following equalities, whictl follow from (1.1I) and (2.1): 

~! :~;j = 2~:r~. A~j = a~ ~) - c ~  ( i . . J  = 1 . 2 ,  3) .  (2.8) 

It is seen fronl (1.1 l j , mtt the nlatrices ][ Aij I[ and ][/3ij II are positive definite and, hence, can l)e inverted. 
This inlplies that  tile relations between Yi and xj are unique (i, j = 1, 2, 3). Consequently, the re(luired 
loading program can be realized in tile inclusion (in tile elastic region). For example, if it is required to 
ensure a unia.xial stress state characterized by only one nonzero conlponent Yk, it follows from (2.8) that the 
external loads nmst be of tile form :ci = Bi~.yk (i = 1, 2, 3; no sunnnation over k), where Bik =/3~tAjk (/3~' 
are the components of tile nlatrix inverse to 11~3ij][)- 

Let us assume that  upon carrying out tilree independent  loading programs,  tile moulent of onset of 

the plastic strains f~ (more precisely, their rates ]~') was recorded for each progranl.  The quantities f~' an(1 
Yi are deternfined fronl (1.11) and (2.1) for known values of Fi and xi. Froln relations (2.3), we obtain 

-- fPgl- .f['= Ap.s~2a~j!lj (i = 1, 2, 3), Ap (2.9) 

It shouht be noted that at this inonlent, tile equal i ty sp = ay holds for each of the three experiments. 
With this in nfind, we obtain fronl (2.9) a system of the form (2.7) for deternfining six unknowns (o.~ ~) and 

r . . fv(k)/A!~9 Tile resulting svstenl is solve(l bv tim <v), where ai] should be replaced bv ofjCry 2 and F} k) by i z , �9 . �9 

technique outlined al)ove. 
If the EPNI nlaterial ]lardens ill the i)lastic defornlation, i.e...4"p > 0 for fllrther active loading at 

i2) suffic(' to dct(~rnline infinity, the vahles of Ap and 'sv obtained ill two experinlents  fi)r .~p > Cry and s~ l) # .sp 

tile constants B0 and q in (2.4), since Ap = B0,~ q+t according to (2.3) and (2.4). Given F~ (k). .'r! t:), , and ~ ,  

tile ~dues of A (k) and s (t9 (~: = 1, 2) are readily de termined from (1.11), (2.1), (2.5), and (2.9). Ill this case, 
it is assumed that  the viscous strains do not ()(:cur in tile elastoplastic deformat ion of tile EPNI, i.e., f/c = 0. 

Determinat ion  o f  Viscous Characteristics. Tile technique of deterlnining the constants c~) and n. ill 
(2.6) is similar to the above-described technique of de termining the elastoplastic characteristics. It suffices to 
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perform three  indepen(lent experiments and m e ~ u r e  F~ k) (t) and F~k)(t0) for the external loads x~ k) --- xl k) (t) 
such tha t  the  corresponding stresses y}k)(t) in (1.11) are subject to the conditions det[ty}k)(to)ll ~ 0 and 

sp(y~k)(t)) < O'y, i.e., .fP(k)(t) = 0 (i, k = 1, 2, 3; 0 < t <~ to). Here to is the moment chosen for observation 

(at t < 0, the  elastic medium S and the inclusion S* are in their initial states). The quantities ]~:(~')(to) are 
determined from (2.1). 

It follows from (2.6) that  the specific dissipation power W = satisfies the equali ty W s "+l, i.e., Cyi _- 

s~ = WW(~+I). As a result, relation (2.6) can be written in tlm form 

/ic =_ 8c'n-1 aijY , =_ tv(n--1)/(n+l) o~Cjyj. 

At the  moment t = t0, the quantities ] [  and tV are known; therefore, a~ssuming the creep exponent n 
to be known, we obtain the following system to determine ~,icj, which is similar to system (2.7): 

(i, k : 1 .2 ,  3). (2.10) 

c system (2.10) becomes Since ai~ = ( t j i ,  

ceCij y(1) y ( 2 ) i  j = W~l-n)/(n+l)]C(DY} 2) = vv2~'~(t-'~)/('~+ L) ]i;c('2) Yi(1). 

Provided 14~L ~ I[~2, n is determined uniquely from this equation. Then. system (2.10) is solved for ai~ by 
the same technique as (2.7). 

In concluding, the results obtained can he generalized to the case of a linear viscoelastic medium with 
an EPNI  characterized by more complex constitutive equations compared to (2.1)-(2.6), which allow for the 
aftereffects, hardening and unhardening, accumulation of defects in creel), etc. 
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