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DETERMINATION OF THE STRENGTH CHARACTERISTICS OF A PHYSICALLY
NONLINEAR INCLUSION IN A LINEARLY ELASTIC MEDIUM

I. Yu. Tsvelodub UDC 539.37

An isotropic elastic plane with a physically nonlinear inclusion with unknown properties is
considered. The general relations between the stress-strain state of the inclusion and the loads
applied at infinity are obtained. These relations are used to develop a method of determining the
viscoelustoplastic properties of an inclusion that is based on measurement of the displacernent
vectors of two points that lie on the boundary of the inclusion and are nonsymmetrical with
respect to its center. This makes it possible to find numerical values of the constants that enter
the constitutive equations of an inclusion.

Eshelby (1] showed that the uniformly distributed stresses applied at infinity cause a uniform stress-
strain state in a homogeneous elastic inclusion of given shape. Vakulenko and Sevost'yanov [2] revealed
that the stress—strain state of an ellipsoidal inclusion with nonlinear properties which is embedded into an
elastic mediwu is also uniform. This is also true for the two-dimensional case considered in this paper. We
propose a method of determining the viscoelastoplastic properties of an elliptic, physically nonlinear inclusion
(EPNI) by measuring the displacement vector of two points that lie on the boundary of the inclusion and are
nonsyminetrical with respect to its center. The state of the art of engineering techniques makes it possible
to perform high-accuracy measurements [3].

1. Stress—Strain State of an Elastic Plane with EPNI. We consider the plane stresses or
generalized plane strains of an EPNI-containing isotropic elastic plane under uniformly distributed stresses
at infinity (which, gencrally, depend on the time or loading parameter). We denote the principal values of
these stresses by Ny and Na. respectively, and the angle made by the first principal axis with the Ox axis by
«. The coordinate system Oxy is chosen so that the equation of the boundary L between the elastic medium
S and the inclusion S* has the form z2a~2 + 4?02 = 1, where a > b. Before the stresses are applied at
infinity, the regions § and S* are in the initial undeformed state.

We write Hooke's law for the region S:

Buci = (& — 1)onnlps + 4021 (k.1=1,2), 021 = Okt — OnnOrl/2. (1.1)

Here 021 and dj; are the stress-deviator and unit-tensor components. respectively, p is the shear modulus,
@ = 3 — dv refers to plane strain and @ = (3 — »)/(1 + v) refers to the general plane stress, v is the Poisson
ratio [4]: summation is performed over repeated indices from 1 to 2.

The strains sy are assuined to be small and are expressed in terms of the displacements uy (k, 1 =1, 2)
by the Cauchy relations. The load and displacement fields are continuous on the boundary L.

As has already been noted, under the above-indicated conditions. the uniform stress-strain state occurs
in the EPNI with nonlinear properties [2]; however, the relations between the stresses and strains in S and
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those at infinity are lacking [2]. We assume that the total strains of the EPNI are composed of the elastic <§]
and inelastic £y* strains:

=+l (k1=1.2). (1.2)
To construct the desired relations, we map the elastic region S onto the exterior of the unit circle v in
the complex plane ¢ [4]:

z=w(()=R(C+m(™"), (= pexp(it). 3

2R=a+b, m= (a—b)/(a+b) (R>0, 0<m<1l).

Assuming that the rotation at infinity does not occur and bearing in mind that the principal vector
of the forces applied to the boundary L from the side of S* vanishes (since the stresses o7, at all the points
of §* are equal), we obtain the following expressions for the functions ¢(¢) and (¢) that determine the
stress-strain state in S [4]:

©(Q)=TR( + ¢0(¢), ¥(C)=T"RC+%0(C), 4L=Ny+ Na. 2I'=(Ny — N) exp (—2icv). (1.4)

Here ¢o(¢) and v(¢) are determined from the boundary values of the function f = 20U/9z [U = U(z, %) is
a stress function] [4, 5}. The continuity condition in the normal direction to the boundary L implies that the
equality OU/0Z = 9U*/0Z must hold on this boundary, i.e.,
ou-
f=2 B5 on L. (1.5)

“~

Here U* = U*(z, Z) is a stress function for the EPNL

Since o}, do not depend on x and y (and, hence, on z and Z), with allowance for the relations o}, +03, =
10%U* /(820%) and ok, = oty + 2i0], = 10°U*/92? (5], after discarding the z and Z linear terms which have
no effect on the stress-strain state, for U* we obtain

U* = Azz + B2%/2+ BZ%/2. 2A =0}, +0%. 2B =03 — o}, + 2ic}s. (1.6)
From (1.4)-(1.6) and formulas for o and vy (4], we find

@(Q) = R{T¢+ [B+m(A-T)-T"|¢"'}. )
[(m2+1)(A-2T)+m(B+B-T)|(*+B-m?B-T’
= m)

Using the relations 20w*/92 = ¢}, — 3y + 2ict, and Ow* /024 0™ [0Z = €7y +£§,, where w™ = u] +iuj
(5] (¢}, do not depend on z and %) and assuming that the point (0.0) € S* is fixed, i.e.. w*(0.0) = 0, we
express the complex displacement in S* in the form

¥(¢) = R{T'¢ + ot

2uw* =Cz+ Dz, C=c]]+e5+2ic", D=c¢] —chy+2icy, (1.8)

where £* is an arbitrary constant equal to the rotation value.

Since the displacements at the interface between the regions S and S* are continuous, i.e., w = w* on
L, the functions ¢(¢) and ¥(¢) in (1.7) must satisfy the known boundary condition for displacements; the
latter can be combined with a similar condition for the stress problem [4, 5] and relations (1.8) to give

(e + )p(o) = (A + uC)w(a) + (B + uD)w (o), (1.9)
where o = exp (if) is an arbitrary point on 7.
Substituting (1.3) and (1.7) into (1.9) and equating the coefficients of o and o~!, we obtain

w(mC + D) = &(mA+ B) — (&+ 1)(mI +T), (1.10)

w(C +mD) = —(A+mB) + (&+ 1)
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Using the expressions for A, B, C, and D in (1.6) and (1.8) and the equalities 0% + 55 = 4I" and 055 —
oX+2io%3 = 2I' [4] and performing simple manipulations, we obtain from (1.10) the desired relations between
the stresses and strains in §* and those at infinity:

* ¥ - * X ok
Fy=¢}), Fa=ci. Fy=2, yi=0]. Yo=0xn y3=0,

o 20O 0 o 30 ___(&E—a‘—l)(l—m)
Ty =0q]- T2 = 099, r3 19, ] = _1/1(14_”1)
(1.11)
o o z—-1 (2+1)(1+m) N &+ m?
= (g} = ———, g = = A————— = — .
2= 1 0 4p(1 - m) 3 (1l — m?2)
. 2+ 1)(3—-m ®e+1 2+ 1)(3
B11 =(—-—‘)£-——)'» Pra=Por = ————, dp= (et B+ m)
8u(l +m) 8u Su(l —m)
e&+1
) TOn  csrmmermrerr——— <,
B33 =) (0<m<1),

where the other coefficients «;; and j3;; are equal to zero; summation in (1.11) is performed over j from 1
to 3.

The constitutive equations for S* of the form (1.2) and (1.11) form a closed system that allows us
to determine the loading history o}, = o},(t) (k.1 = 1, 2) in the EPNI from the known loading history
oy = o (t) at infinity, where # is the time or loading parameter.

One can show that the system is uniquely solvable for o}, = o},(t) under the usual assumptions of
stable inelastic deformation [6]. Thus, if )* = <iy*(c},,,) are differentiable functions (which is. for example.
the case where the behavior of the inclusion material is described by the deformation theory of plasticity),
the stability condition has the form As)*Ao}, > 0. If ¢ el* are the irreversible strains (plastic. viscous, and

2
creep strains) satisfying relations of the flow theory, a similar inequality has the form / Aéﬁ*Aa}:l dt > 0 at
0
any moment t > 0 for the corresponding initial conditions at + = 0 [6].

One can show that the above solution for an EPNI-containing plane is unique, i.e., for given o7 and the
above-indicated restrictions imposed on the relation between <¥* and g}, the stress-strain state occurring
in $* is uniform.

If the uniform strains sz* are specified in S* (whose nature is of no significance) and o5 = 0. the
stresses o}, are determined from relations (1.2) and (1.11) uniquely. This case was studied by Eshelby [1].

2. Determination of the Elastoviscoplastic Characteristics of an Inclusion. We assume that
the elastic constants p and @ of the medium § and the geometrical parameters R and m of the inclusion S*
are known. It is required to determine the mechanical characteristics of the inclusion. With the use of (1.11),
one can solve this problem or, to be more speciﬁc the problem of determining the numerical values of the
constants in Egs. (1.2), in which the relations for €7 and ¢ ~* are to be detailed. We assume that the elastic
strains obey Hooke’s law, i.e., <§] are expressed in terms of o}, by linear relations which involve six unknown
constants in the two-dimensional case. The inelastic strains £* are composed of the plastic strains k7 and
the time-dependent viscous strains e§j: iy = by + < (k.1 = 1. 2). With allowance for this relation. we
write (1.2) in the form

E = (Y;j!/j + flp -+ f; (I =1.2. 3) (‘) 1)

f=el, = =20 fi=<l ff=<5 f5 =20
where [|ag;|| (¢, j = 1, 2, 3) is the symmetrical matrix composed of the elastic-compliance components of the
inclusion, i.e., the elastic strains of the inclusion f; are given by
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e 1 882 2 __ e,

fi= 290 Se = G YiYj- (2.2)
To determine the elastoplastic properties, we assume that the external loads, i.e., the stresses x;, vary

in direct proportion with one parameter. This allows us to use (at least, in the first approximation) the

relations of the deformation theory of plasticity:

0, 8p < Oy,
ff=9 0% (2.3)

S Ty.
3%" p = Uy

Here s, = sp(y;) is a first-power homogeneous function, oy is the yield point upon uniaxial extension along
the Oz axis, A > 0 is the undetermined multiplier for an ideal plastic material [in this case, the second
inequality in (2.3) is replaced by the equality s, = oy, and A = A(sp) is a monotonically increasing function
for a hardening material, which is assumed to be a power function:

A= Bosl. (2.4)

We write s, by analogy with relation (2.2) for se:

2 _ P P P P o_
8y = LYY, a;; = a;, of; =1 (2.5)

It is noteworthy that the function s, in (2.5) is a generalization of the relations s, = s,(y;) for an

isotropic medium for af;, = ajy = 1, ofy =1~ /2, and ofy = g, and the other of;
criterion for 4 = 3 and the Tresca criterion for 3 = 4.)

Finally, in determining the viscous strains ff, we assume that the aftereffects do not occur in the EPNI

(which can be verified experimentally) and use the common relations of the steady-creep theory [6]
fresSt = afum.  of = (2.6)

Instead of the power function in (2.6), one can use other functions. for example, exponential, hyperbolic
sine, fraction-lingar, etc. [6].

We assume that when the external stresses z; are applied, the displacements v} (k = 1, 2) of two
points L located on the boundary nonsyminetrically relative to the EPNI center [which is assumed to be
fixed: w*(0,0) = 0] can be measured. As follows from (1.8) and (1.3), the strains F; and the rotation of
¢* are determined uniquely in the inclusion. Indeed, substituting the values of z;, = R(oy + nw,:l) and
Iy = R(a,:l + moy) (k = 1, 2) into (1.8), we obtain a system of two linear equations for C' and D whose
determinant R%(1 ~ m2)(0102_ 1 agal‘l) does not vanish for z; # 2 and z; # —z,.

Given the strains in the inclusion F; and the external stresses x;, the stresses in the inclusion y;
(i = 1, 2, 3) are determined uniquely, since, according to (1.11), the matrix ||e;;|| is negative definite and
det flayj|l < 0.

Bearing the foregoing in mind, we propose the following algorithm of calculating the constants in the

are zero (the Mises

constitutive equations.
Determination of the Elastic Constants afj. It is necessary to measure the displacements of the above-
(k)

indicated points, from which the strains F; are determined for combinations of the external loads x; such
(*)

that the corresponding stresses y;"’ in (1.11) are linearly independent. i.e., A = det []y§k)[] # 0, and do not

cause the plastic strains f,:’)(l") (i, k=1, 2, 3) in the inclusion. The latter can be verified by unloading, i.e.,
(+)

removing the loads x;"" and measuring the residual displacements @* %) of the above-indicated points of the
contour L (if ff'(k) = 0. the condition #**) = 0 must hold and vice versa). It is assumed that the loads are
applied at infinity instantaneously (the viscous strains fic *) do not occur in the inclusion).

With allowance for these remarks, it follows from (2.1) that

oy =F® (i, k=1,2.3). (27)



Relations (2.7) constitute a system of nine linear equations for six desired «f;. If we confine our
analysis to two experiments (b = 1, 2). the matrix of the system is degenerate despite the fact that
the number of unknowns coincides with rhe number of equations in (2.7). Indeed. for the desired vector
{af;. 059, aS3, 50, 53, 53}, the structure of the matrix |lag;|| (i. j = 1.2,...,6) is as follows: ay; = a3z =
asy = Yy ', Q12 = U434 = 455 = .Uél)- a3 = a5 = asg = ?/;(),l)q ag1 = Qg2 = A3 = yfz)- ap) = dyy = Qg5 = yf),
and agy = ags = agg = qg ) with other a;j being equal to zero. Direct calculations show that det ||a;j|| = 0.
Therefore, setting 7 = 1, we find af; from three equations corresponding to & = 1, 2, and 3. Similarly, setting

13

i = 2 and then i = 3, we obtain systems for of; and as; (j=1,2.3) for k=1, 2, and 3 whose determinants
do not vanish for the three cases (i = 1.2,3). Consequently, all the constants af; are determined uniquely.

It should be noted that the coefficients afj and “5; (i # j) are determined by the above method as
independent coefficients. Since of; = «f;, a comparison between these quantities can serve as a criterion to
check the measurement accuracy and the validity of the adopted hypotheses, in particular, the hypothesis
that the stresses and elastic strains in the inclusion are related linearly.

We consider the case of an isotropic inclusion. Let the equality 2ys3/(y1 — y2) = F3/(F) — F3) be
sufficiently accurate for the data obtained in the above-described experiments, which shows indirectly that
the stress and strain tensors are coaxial in the two-dimensional case: if this equality holds for any combinations
of y; (i =1, 2, 3), the elastic constants are related, by virtue of (2.1) (for ff = f£ = 0), by the formulas
af| = 05y, afy = 2(0f; — o§y). and af3 = af3 = 0, which corresponds to Hooke’s law for an isotropic medium
of the form (1.1) that contains only two constants p* = (1/2)(af, —afy) 7! and &* = (3a§, +a$y)(af; —af,) 7L
Therefore, in the first approximation, for clastic strains, the inclusion can be assumed to be isotropic, and «f,;
and af, can be determined from the data obtained in one of the above-mentioned experiments. for example,
from the relations af,y; + af,y2 = Fy and a1 + afya = Fb provided [y)| # |yl

Determination. of Plastic Characteristics. Assuming that the quantities af; are known, for elastic
deformation of the EPNI, we obtain the following equalities, which follow from (1.11) and (2.1):

Yoy = 35 ). A= (YfJ — (v (i.j=1.2, 3). (2.8)

It is seen from (1.11, .uat the matrices || A;;]| and ||3;;|| are positive definite and, hence, can be inverted.
This implies that the relations between y; and z; are unique (i, j = 1, 2, 3). Consequently. the required
loading program can be realized in the inclusion (in the elastic region). For example, if it is required to
ensure a uniaxial stress state characterized by only one nonzero component yy, it follows from (2.8) that the
external loads must be of the formn z; = By (i = 1, 2, 3; no summation over k), where By, = /3,3114 ik (,’}i;l
arc the components of the matrix inverse to ||3ij||)-

Let us assume that upon carryving out three independent loading programs, the moment of onset of
the plastic strains f? (more preciscly. their rates fl”) was recorded for each program. The quantities f and
y; are determined from (1.11) and (2.1) for known values of F; and x;. From relatiouns (2.3), we obtain

=487y (i=1,23). A= fly. (2.9)

It should be noted that at this moment, the equality s, = oy holds for each of the three experiments.

With this in mind, we obtain from (2.9) a system of the form (2.7) for determining six unknowns (a?;

i; and

ay), where of; should be replaced by afja; 2 and Fi(k) by f,f)(k)/Aﬁ,l"). The resulting svstem is solved by the

technique outlined above.
If the EPNI material hardens in the plastic deformation, i.e.. §, > 0 for further active loading at

s . . . . 1 2 .
infinity, the valnes of 4, and s, obtained in two experiments for s, > oy and 31(, ) # s,(, ) suffice to determine

the constants By and ¢ in (2.4), since 4, = BosItt according to (2.3) and (2.4). Given F l-(k). :I'Ek) , and ol

1yt
the values of Aﬁ,k) and sg") (k =1, 2) are readily determined from (1.11), (2.1), (2.5), and (2.9). In this case,
it is assumed that the viscous strains do not occur in the elastoplastic deformation of the EPNL i.e., fi = 0.

Determination of Viscous Characteristics. The technique of determining the constants «; and n in

(2.6) is similar to the above-described technique of determining the elastoplastic characteristics. It suffices to
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perform three independent experiments and measure F} (k) (t) and F (%) (to) for the external loads ch) = .1:5“ (1)
such that the corresponding stresses y; (k) (t) in (1.11) are subject to the conditions det{ly k) (to)]l # 0 and
Sp(Jl )(t)) < oy, ie., fp(/”)( t)=0(. k=12 3,0 <t <ty). Here ty is the moment chosen for observation
(at t < 0, the elastic medium S and the inclusion S* are in their initial states). The quantities f; ) (to) are
determined from (2.1).

It follows from (2.6) that the specific dissipation power W = f¢y; satisfies the equality W = s2*!, i.e.,
se = WY+ Ag a result, relation (2.6) can be written in the form

¢ 1 1)
fp_bzz cy — u/(n 1)/(n+1) a Y-

(3

At the moment t = #g, the quantities fC and W are known; therefore, assuming the creep exponent n
to be known, we obtain the following system to determine «f;, which is similar to system (2.7):

i3
oGyt = WD R k= 102,3), (2.10)
Since af; = af;, system (2.10) becomes
sz,(l A‘ ”/ e--n)/(n+l)fc(l) (2) vV(l n /(n-H)fc(Z 1

Provided W, # W5, n is determined uniquely from this equation. Then. system (2.10) is solved for of; by
the same technique as (2.7).

In concluding, the results obtained can be generalized to the case of a linear viscoelastic medium with
an EPNI characterized by moré complex constitutive equations compared to (2.1)-(2.6), which allow for the
aftereffects, hardening and unhardening, accumulation of defects in creep, etc.
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